Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurología (Barc., Ed. impr.) ; 35(7): 479-485, sept. 2020. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-202013

RESUMO

INTRODUCCIÓN: La enfermedad de Alexander es una enfermedad rara causada por mutaciones en el gen que codifica la proteína glial ácida fibrilar (GFAP). En un estudio previo hemos observado que la diferenciación de neuroesferas transfectadas con estas mutaciones genera un tipo celular que comparte la expresión de GFAP y NG2. OBJETIVOS: Determinar el efecto de las mutaciones en marcadores moleculares en comparación con células de glioma diferenciados que expresan simultáneamente GFAP y NG2. MÉTODOS: Se utilizaron muestras de glioblastoma humana (GLM) y neuroesferas procedentes de rata transfectadas con mutaciones de GFAP para el análisis de la expresión tras diferenciación de GFAP y NG2, así como el análisis inmunocitoquímico de diferenciación de ambos tipos celulares y detección de ambas proteínas, junto a nestina, vimentina, Olig2 y caspasa 3 a los 3 y 7 días de diferenciación. RESULTADOS: Tanto las células transfectadas con mutaciones de GFAP como las células procedentes de GLM mostraron un incremento de NG2 y GFAP. Sin embargo, la expresión de células caspasa 3 positiva era marcadamente mayor entre las células transfectadas que entre las células procedentes de GLM. CONCLUSIÓN: Nuestros resultados parecen indicar que la expresión de GFAP no es el único factor que condiciona la muerte celular en la enfermedad de Alexander y que la expresión de caspasa 3 y el potencial papel de la NG2 en incrementar la resistencia a la apoptosis en las células que coexpresan GFAP y NG2 deben ser considerados en la búsqueda de acciones terapéuticas en esta enfermedad


INTRODUCTION: Alexander disease is a rare disorder caused by mutations in the gene coding for glial fibrillary acidic protein (GFAP). In a previous study, differentiation of neurospheres transfected with these mutations resulted in a cell type that expresses both GFAP and NG2. OBJECTIVE: To determine the effect of molecular marker mutations in comparison to undifferentiated glioma cells simultaneously expressing GFAP and NG2. METHODS: We used samples of human glioblastoma (GBM) and rat neurospheres transfected with GFAP mutations to analyse GFAP and NG2 expression after differentiation. We also performed an immunocytochemical analysis of neuronal differentiation for both cell types and detection of GFAP, NG2, vimentin, Olig2, and aspase-3 at 3 and 7 days from differentiation. RESULTS. Both the cells transfected with GFAP mutations and GBM cells showed increased NG2 and GFAP expression. However, expression of caspase-3-positive cells was found to be considerably higher in transfected cells than in GBM cells. CONCLUSIONS: Our results suggest that GFAP expression is not the only factor associated with cell death in Alexander disease. Caspase-3 expression and the potential role of NG2 in increasing resistance to apoptosis in cells co-expressing GFAP and NG2 should be considered in the search for new therapeutic strategies for the disease


Assuntos
Humanos , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Alexander/genética , Antígenos/metabolismo , Glioblastoma/metabolismo , Proteoglicanas/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Glioblastoma/genética , Mutação , Nestina/metabolismo , Cultura Primária de Células , Ratos , Transfecção , Vimentina/metabolismo
2.
Neurologia (Engl Ed) ; 35(7): 479-485, 2020 Sep.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29249301

RESUMO

INTRODUCTION: Alexander disease is a rare disorder caused by mutations in the gene coding for glial fibrillary acidic protein (GFAP). In a previous study, differentiation of neurospheres transfected with these mutations resulted in a cell type that expresses both GFAP and NG2. OBJECTIVE: To determine the effect of molecular marker mutations in comparison to undifferentiated glioma cells simultaneously expressing GFAP and NG2. METHODS: We used samples of human glioblastoma (GBM) and rat neurospheres transfected with GFAP mutations to analyse GFAP and NG2 expression after differentiation. We also performed an immunocytochemical analysis of neuronal differentiation for both cell types and detection of GFAP, NG2, vimentin, Olig2, and caspase-3 at 3 and 7 days from differentiation. RESULTS: Both the cells transfected with GFAP mutations and GBM cells showed increased NG2 and GFAP expression. However, expression of caspase-3-positive cells was found to be considerably higher in transfected cells than in GBM cells. CONCLUSIONS: Our results suggest that GFAP expression is not the only factor associated with cell death in Alexander disease. Caspase-3 expression and the potential role of NG2 in increasing resistance to apoptosis in cells co-expressing GFAP and NG2 should be considered in the search for new therapeutic strategies for the disease.


Assuntos
Doença de Alexander/genética , Antígenos/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/metabolismo , Proteoglicanas/metabolismo , Animais , Caspase 3/metabolismo , Diferenciação Celular , Glioblastoma/genética , Humanos , Mutação , Nestina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Cultura Primária de Células , Ratos , Transfecção , Vimentina/metabolismo
3.
Neurología (Barc., Ed. impr.) ; 33(8): 526-533, oct. 2018. ilus
Artigo em Espanhol | IBECS | ID: ibc-175967

RESUMO

Introducción: La enfermedad de Alexander (AxD) es una leucodistrofia. Su base patológica, junto a la pérdida de mielina, es la aparición de los cuerpos de Rosenthal, que son inclusiones citoplasmáticas en células astrocitarias. Mutaciones en el gen que codifica la GFAP se han identificado como una base genética para AxD. Sin embargo, no se conoce el mecanismo por el cual estas variantes producen la enfermedad. Desarrollo: La hipótesis más extendida es que AxD se desarrolla por un mecanismo por ganancia de función debido al incremento de GFAP. Sin embargo, este mecanismo no explica la pérdida mielínica, dado que los modelos experimentales que expresan GFAP normal o mutada no generan alteración mielínica. En la presente revisión se analizan otras posibilidades que permitan justificar dicha alteración, como son alteraciones epigenéticas, inflamatorias, la existencia de células NG2 (+)-GFAP (+) o cambios postraslacionales sobre la GFAP al margen de la mayor expresión. Conclusiones: Las diferentes hipótesis analizadas pueden explicar la alteración de la mielina que aparece en los pacientes y que pueden presentarse asociadas y abren la posibilidad de plantear terapéuticas basadas en estos mecanismos


Introduction: Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. Development: The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. Conclusions:The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms


Assuntos
Humanos , Animais , Bainha de Mielina/metabolismo , Doença de Alexander/metabolismo , Bainha de Mielina/patologia , Doença de Alexander/patologia , Proteína Glial Fibrilar Ácida/metabolismo
4.
Neurologia (Engl Ed) ; 33(8): 526-533, 2018 Oct.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28342553

RESUMO

INTRODUCTION: Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. DEVELOPMENT: The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. CONCLUSIONS: The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms.


Assuntos
Doença de Alexander/metabolismo , Bainha de Mielina/metabolismo , Doença de Alexander/patologia , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Bainha de Mielina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...